not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
↳ QTRS
↳ DependencyPairsProof
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(y)
NOT(or(x, y)) → NOT(x)
NOT(or(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(y)
NOT(and(x, y)) → NOT(not(not(y)))
NOT(or(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(not(y))
NOT(or(x, y)) → NOT(not(y))
NOT(and(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(not(not(y)))
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(y)
NOT(or(x, y)) → NOT(x)
NOT(or(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(y)
NOT(and(x, y)) → NOT(not(not(y)))
NOT(or(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(not(y))
NOT(or(x, y)) → NOT(not(y))
NOT(and(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(not(not(y)))
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
NOT(and(x, y)) → NOT(x)
NOT(and(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(y)
NOT(or(x, y)) → NOT(x)
NOT(or(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(y)
NOT(and(x, y)) → NOT(not(not(y)))
NOT(or(x, y)) → NOT(not(x))
NOT(and(x, y)) → NOT(not(y))
NOT(or(x, y)) → NOT(not(y))
NOT(and(x, y)) → NOT(not(not(x)))
NOT(or(x, y)) → NOT(not(not(y)))
[and2, or2]
and2: [1,2]
or2: [1,2]
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
not(not(x)) → x
not(or(x, y)) → and(not(not(not(x))), not(not(not(y))))
not(and(x, y)) → or(not(not(not(x))), not(not(not(y))))